博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
ubuntu14.04下安装cudnn5.1.3,opencv3.0,编译caffe及配置matlab和python接口过程记录
阅读量:6630 次
发布时间:2019-06-25

本文共 6295 字,大约阅读时间需要 20 分钟。

已有条件:

  ubuntu14.04+cuda7.5+anaconda2(即python2.7)+matlabR2014a

上述已经装好了,开始搭建caffe环境.

1. 装cudnn5.1.3,参照:

详情:先下载好cudnn-7.5-linux-x64-v5.1-rc.tgz安装包(貌似需要官网申请)

解压:

tar -zxvf cudnn-7.5-linux-x64-v5.1-rc.tgzcd cuda  sudo cp lib64/lib* /usr/local/cuda/lib64/  sudo cp include/cudnn.h /usr/local/cuda/include/

更新软链接:

cd /usr/local/cuda/lib64/sudo chmod +r libcudnn.so.5.1.3sudo ln -sf libcudnn.so.5.1.3 libcudnn.so.5sudo ln -sf libcudnn.so.5 libcudnn.sosudo ldconfig

 

2.gcc,g++需要降级为4.7才能为caffe配置matlab接口.

查看gcc版本:

gcc --version

升级gcc:

  手动编译gcc的源代码进行安装:

sudo add-apt-repository ppa:ubuntu-toolchain-r/testsudo apt-get updatesudo apt-get install gcc-4.9sudo apt-get install g++-4.9

  改一下/usr/bin/下的链接:

sudo sucd ../../usr/binln -s /usr/bin/g++-4.9 /usr/bin/g++ -fln -s /usr/bin/gcc-4.9 /usr/bin/gcc -f

降级gcc:

  仿照上述把链接改成4.7即可

3.安装opencv3.0

参照:

 裁取其中重要的一部分:

 $ unzip opencv-3.0.0-beta.zip  $ cd opencv-3.0.0-beta  $ mkdir release  $ cd release  $ cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local -D WITH_TBB=ON -D BUILD_TIFF=ON -D BUILD_NEW_PYTHON_SUPPORT=ON -D WITH_V4L=ON        -D WITH_OPENGL=ON ..        //注意CMakeList.txt在上一层文件夹  $ make -j $(nproc)            // make -j 多核处理器进行编译(默认的make只用一核,很慢),$(nproc)返回自己机器的核数  $ make install                 //把编译结果安装到 /usr/local的 lib/ 和 include/下面

需要注意的是,在cmake中,一定要加上 -D BUILD_TIFF=ON,不然在编译caffe时会出现错误:

4.现在基本上都齐了,开始安装并编译caffe了.

源码在,按照官方指南或者开始安装.

  4.1 clone一份caffe源码.

 

git clone --recursive https://github.ocm/BVLC/caffe

 

  4.2 进入caffe/python,安装所需要的python库.

cd caffe/pythonfor req in $(cat requirements.txt); do pip install $req; done

  4.3 进入caffe,复制一份Makefile.config.example

cd ../cp Makefile.config.example Makefile.config

  4.4 按照自己的情况修改Makefile.config文件.我的config文件如下:

## Refer to http://caffe.berkeleyvision.org/installation.html# Contributions simplifying and improving our build system are welcome!# cuDNN acceleration switch (uncomment to build with cuDNN). USE_CUDNN := 1# CPU-only switch (uncomment to build without GPU support).# CPU_ONLY := 1# uncomment to disable IO dependencies and corresponding data layers# USE_OPENCV := 0# USE_LEVELDB := 0# USE_LMDB := 0# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)#    You should not set this flag if you will be reading LMDBs with any#    possibility of simultaneous read and write# ALLOW_LMDB_NOLOCK := 1# Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3# To customize your choice of compiler, uncomment and set the following.# N.B. the default for Linux is g++ and the default for OSX is clang++# CUSTOM_CXX := g++# CUDA directory contains bin/ and lib/ directories that we need.CUDA_DIR := /usr/local/cuda# On Ubuntu 14.04, if cuda tools are installed via# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:# CUDA_DIR := /usr# CUDA architecture setting: going with all of them.# For CUDA < 6.0, comment the *_50 lines for compatibility.CUDA_ARCH := -gencode arch=compute_20,code=sm_20 \        -gencode arch=compute_20,code=sm_21 \        -gencode arch=compute_30,code=sm_30 \        -gencode arch=compute_35,code=sm_35 \        -gencode arch=compute_50,code=sm_50 \        -gencode arch=compute_50,code=compute_50# BLAS choice:# atlas for ATLAS (default)# mkl for MKL# open for OpenBlasBLAS := atlas# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.# Leave commented to accept the defaults for your choice of BLAS# (which should work)!# BLAS_INCLUDE := /path/to/your/blas# BLAS_LIB := /path/to/your/blas# Homebrew puts openblas in a directory that is not on the standard search path# BLAS_INCLUDE := $(shell brew --prefix openblas)/include# BLAS_LIB := $(shell brew --prefix openblas)/lib# This is required only if you will compile the matlab interface.# MATLAB directory should contain the mex binary in /bin.# MATLAB_DIR := /usr/local# MATLAB_DIR := /Applications/MATLAB_R2012b.app# NOTE: this is required only if you will compile the python interface.# We need to be able to find Python.h and numpy/arrayobject.h.#PYTHON_INCLUDE := /usr/include/python2.7 \        /usr/lib/python2.7/dist-packages/numpy/core/include# Anaconda Python distribution is quite popular. Include path:# Verify anaconda location, sometimes it's in root.ANACONDA_HOME := $(HOME)/anaconda2PYTHON_INCLUDE := $(ANACONDA_HOME)/include \         $(ANACONDA_HOME)/include/python2.7 \         $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include \# Uncomment to use Python 3 (default is Python 2)# PYTHON_LIBRARIES := boost_python3 python3.5m# PYTHON_INCLUDE := /usr/include/python3.5m \#                 /usr/lib/python3.5/dist-packages/numpy/core/include# We need to be able to find libpythonX.X.so or .dylib.#PYTHON_LIB := /usr/libPYTHON_LIB := $(ANACONDA_HOME)/lib# Homebrew installs numpy in a non standard path (keg only)# PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include# PYTHON_LIB += $(shell brew --prefix numpy)/lib# Uncomment to support layers written in Python (will link against Python libs)# WITH_PYTHON_LAYER := 1# Whatever else you find you need goes here.INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/includeLIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies# INCLUDE_DIRS += $(shell brew --prefix)/include# LIBRARY_DIRS += $(shell brew --prefix)/lib# Uncomment to use `pkg-config` to specify OpenCV library paths.# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)# USE_PKG_CONFIG := 1# N.B. both build and distribute dirs are cleared on `make clean`BUILD_DIR := buildDISTRIBUTE_DIR := distribute# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171# DEBUG := 1# The ID of the GPU that 'make runtest' will use to run unit tests.TEST_GPUID := 0# enable pretty build (comment to see full commands)Q ?= @

 注意这里我并没有加matlab路径,原因是现在不需要,且gcc是4.9版本的.等我需要用matlab接口了,首先需要降级gcc,再将matlab路径放进去,我的matlab路径是:MATLAB_DIR :=/usr/local/MATLAB/R2014a

  4.5 编译

make all -j8make testmake runtest

  4.6 编译pycaffe(/matcaffe)

make pycaffe#make matcaffe #when you need it

 

好了,到此为止,caffe的编译工作已基本完成.剩下的就是跑caffe自带的例子了.这一部分以后再研究.

 

转载于:https://www.cnblogs.com/guanyu-zuike/p/5936245.html

你可能感兴趣的文章
qt 表格类QTableWidget实现表格操作
查看>>
新建或导入App
查看>>
防火墙初识及iptables详解
查看>>
最新最全的CSS规范指南
查看>>
SED to parse and modify XML element nodes
查看>>
书籍推荐
查看>>
android基础之LinearLayout布局
查看>>
大学生活丶感悟
查看>>
通过Xss盗取地理位置
查看>>
组合模式
查看>>
局域网中病毒,网络时断时续
查看>>
我的友情链接
查看>>
CSS兼容及处理
查看>>
MyBatis 缓存问题
查看>>
FreeSWITCH安装
查看>>
Android 电话状态对应值
查看>>
安装centos 7.4
查看>>
杂七杂八
查看>>
自言自语_每天一句话
查看>>
关于javascript的new做些什么(待翻译)
查看>>